Dossier
Com afectarà el canvi climàtic les Balears?

Itineraris
El castell d’Alaró

Cinefàgia
Què seria del cine sense els dolents?

La botiga
Cecerita Picornell,
una indústria artesana i familiar
El principal efecte del canvi climàtic és l’increment de la productivitat vegetal degut a l’augment de les taxes fotosintètiques. Els estudis que tracten els efectes del canvi climàtic sobre la fisiologia de les plantes s’han centrat, especialment, en els efectes associats a l’augment del diòxid de carboni (CO₂) a l’atmosfera a causa de l’augment de les emissions antropogèniques, un dels elements principals del canvi climàtic i desencadenants de l’anomenat efecte hivernal. I això per un motiu ben senzill: el diòxid de carboni és el substrat de la fotosíntesi, el procés mitjançant el qual les plantes converteixen, utilitzant aigua i llum, el CO₂ de l’aire en matèria orgànica. Aquest és el procés subjacent de tota la producció primària de la Terra i, per tant, de la possibilitat que en aquesta hi hagi vida tal com la coneixem. A causa que el CO₂ és el substrat de la fotosíntesi, sembla lícit pensar que el fet que augmenti a l’atmosfera condrerà a un augment de les taxes fotosintètiques i, per tant, a un augment de la productivitat primària. De fet, se sap que les emissions globals de CO₂ superen la suma de la seva acumulació a l’atmosfera i a l’oceà. Això ha fet pensar en l’existència d’un embornal desconegut de carboni, capaç d’emmagatzemar bona part del CO₂ emès, la importància quantitativa del qual ha augmentat al llarg dels darrers 100 anys. S’ha plantejat com a hipòtesi que aquest embornal és constituït pels ecosistemes terrestres, els quals, gràcies a la seva capacitat d’augmentar la taxa fotosintètica en resposta a l’augment del CO₂ atmosfèric, han augmentat la seva capacitat d’emmagatzemar carboni (IPCC, 1995). Confirmar aquesta capacitat de les plantes per augmentar la fotosín-
Dossier

tesi en resposta a l’augment de CO₂ és un objectiu prioritari dins del context del Protocol de Kyoto, ja que això permetria plantejar l’ús de boscos (naturals i artificials) per contrarestar o mitigar l’augment atmosfèric de CO₂. Però, hi ha evidències experimentals que suportin un augment de la fotosíntesi i la productivitat en resposta a l’augment de concentració de CO₂ a l’atmosfera?

Augment del CO₂ atmosfèric i fotosíntesi

Es coneix des de fa temps que la concentració actual de CO₂ a l’atmosfera és un factor limitant de la fotosíntesi de les plantes, principalment per a aquelles (la majoria) que presenten un metabolisme anomenat de tipus C₃ (perquè el primer producte de la fotosíntesi és un compost de 3 àtoms de carboni). Si, artificialment, modifiers la concentració de CO₂ al voltant d’una fulla i simultàniament en mesuram la seva de fotosíntesi (és a dir, la quantitat de CO₂ incorporat en un temps i una superfície foliar determinats) obtenim invariablement una resposta semblant a la que mostra la línia negra de la figura 1.

Aquest fet, que està ampliament demostrat, podria fer pensar que l’efecte de l’augment atmosfèric de CO₂ associat al canvi climàtic serà certament un fort augment de les taxes de fotosíntesi i, per tant, de la producció primària dels ecosistemes terrestres i dels sistemes agrícoles. Ara bé, això no més s’observa típicament en experiments de curt termini (plantes sotmeses a una atmosfera d’elevada concentració de CO₂ un o dos anys). En experimentes de més llarg termini, sovint (però no sempre) s’ha observat el que s’anomena una aclimatació, que consisteix en canvis estructurals i fisiològics de les plantes per «adaptar-se» a la nova situació (Drake i col·laboradors, 1997). Aquesta aclimatació va sovint acompanyada d’un ajust de la resposta fotosintètica com el que mostra la línia gris de la figura 1.

Clarament, l’aclimatació suposa una disminució del benefici inicial de l’augment del CO₂ atmosfèric sobre la fotosíntesi, si bé les taxes fotosintètiques continuen essent més elevades que en les condicions atmosfèriques actuals. Però, són aquestes evidències suficients per afirmar que l’augment del CO₂ a l’atmosfera associat al canvi climàtic es traduirà en un augment de la fotosíntesi i, per tant, de la producció primària dels ecosistemes terrestres?

Modulació de l’augment fotosintètic

Suposeu que, tot i considerant la possible aclimatació de les plantes, la velocitat de la fotosíntesi augmenta com a conseqüència de l’augment atmosfèric de CO₂. Tot i així, encara es pot donar qualssevol tipus de retroalimentació que faci que del cap d’un temps aquest augment de la fotosíntesi reverteixi, és a dir, que a passar dels canvis atmosfèrics en la concentració de CO₂ la taxa fotosintètica

Figura 1. Resposta típica a la taxa de fotosíntesi a l’augment de concentració de CO₂ (línia negra). El sòl indica l’augment de fotosíntesi que caldiria esperar si es duplicà la concentració actual de CO₂ a l’atmosfera (una situació a la qual els models preveuen que s’arribarà cap a l’any 2100). Les respostes de les matisses plantes després d’un període d’aclimatació (línia gris) es distinguen. El sòl 2 indica l’augment de fotosíntesi que caldiria esperar en les plantes aclimatades. Clarament, el benefici inicial de l’augment de CO₂ a l’atmosfera es veu forçant radicar després d’un període d’aclimatació.

amb més energia que mai

gesa endesa

AVARIES: 902 534 902
tornà a valors semblants als que tenia abans de l'augment del CO₂. Un dels processos de retroalimentació més coneguts és el que porta associat un enriquiment del quocient carboni/nitrogen (C/N) dels teixits (figura 2, part dreta). La bà-
gica és la següent: si augmenta el CO₂, augmenta la fotosíntesi, però no la fixació del nitrogen, ja que aquesta depèn de la seva disponibilitat al sòl, la qual no es veu afectada pels canvis atmosfèrics. Aleshores, augmenta el quocient C/N als teixits vegetals (és a dir, disminueix proporcionalment el contingut del N). La matèria orgànica pobra en N és més difícil que sigui descomposta pels microorganismes del sòl, la qual cosa conduceix a una disminució de la disponibilitat de N al sòl, que pot conduir a una disminució de la capacitat fotosintètica a causa que el N és un component bàsic de les proteïnes involucrades en la fotosíntesi (més d'un 50% de tot el nitrogen present a les fulles es troba immobilitzat en forma de compostos que intervenen en la fotosíntesi).

També és cert que l'augment de la fotosíntesi provoca un augment del creixement de les plantes i, particularment, del creixement de les arrels, la qual cosa suposa que augmenta la taxa de descomposició de les arrels, de manera que aquest fet pot augmentar la taxa d'alliberament de N al sòl, contrarestando una mica l'efecte descrit anteriorment (figura 2, part esquerra).

En conjunt, però, l'efecte de retroalimentació degut a l'empobriment en N sembla predominar, i s'ha observat experimentalment una disminució dels beneficis de l'alt CO₂ sobre la fotosíntesi en sistemes pobres en N, associat a una limitada descomposició microbià (Hu i col·laboradors, 2001). De fet, en presència de simbiosis fixadores de N augmenta en gran manera la productivitat dels ecosistemes en condicions d'alt CO₂ (Lüscher i col·laboradors, 2000). Així mateix, està ampliament documentat que l'empobriment en N dels teixits vegetals en condicions d'elevat CO₂ suposa una menys palatabilitat dels teixits, de manera que disminueixen fortement les taxes d'herborícia, la qual cosa pot tenir fortes repercussions en la producció secundària dels ecosistemes (Péneuas i Estiarte, 1998).

Per tant, i considerant diversos factors, sembla que l'efecte beneficis de l'augment del CO₂ atmosfèric sobre la fotosíntesi es pot veure fortament modulat per mecanismes d'acclimatació i de retroalimentació. Què passarà si, a més, s'hi afegixen altres elements del canvi climàtic, com ara l'augment de la temperatura, els canvis en la distribució de les precipitacions, etc.

Fins ara hem parlat només dels efectes que l'augment del CO₂ atmosfèric podria tenir sobre la fotosíntesi de les plantes i, per tant, sobre la producció primària dels ecosistemes terrestres. Ara bé, és ben conegut que la fotosíntesi es veu també fortement afectada per les variacions de temperatura (la resposta és tipicament bifásica, de manera que la taxa fotosintètica augmenta exponencialment en passar de temperatures més baixes a més elevades, però després mostra una disminució en augment, més la temperatura sobre d'un valor óptim) en condicions de falta d'aigua. En general, el canvi Climàtic suposa un augment global de la temperatura i fortes variacions dels patrons de precipitació. A l'àrea mediterrània, en particular, la previsió és d'un augment de la temperatura mitjana (d'uns 4-5°C en 100 anys) i una forta disminució de la disponibilitat d'aigua per a les plantes. Quin serà el resultat, doncs, de l'acció conjunta d'aquests diferents elements del canvi climàtic?

Analitzant totes les evidències experimentals en conjunt, sembla que la suma de dos o més factors associats al canvi climàtic repercuteix negativament en l'augment de la fotosíntesi i la producció associat a l'augment del CO₂. Així, per exemple, el conjunt d'estudis realitzats analitzant aïlladament
els efectes de l’augment del CO₂ a l’atmosfera donen un augment mitjà de la fotosíntesi i la producció de biomassa al voltant d’un 35% respecte de les condicions actuais. En canvi, la mitjana dels estudis que combinen l’augment del CO₂ amb un augment de 4-5°C de temperatura donen un augment de fotosíntesi i producció de biomassa de tan sols el 12%. De manera similar, si es combinen altres elements com la sequera, l’augment de la concentració de gasos tòxics per a les plantes, etc., es redueix força l’augment de les taxes de fotosíntesi degudes a l’augment de disponibilitat de CO₂.

Cal no oblidar, a més, que la fotosíntesi no és l’únic procés de les plantes que es pot veure afectat pels elements del canvi climàtic. La respiració, per exemple, es veu més afectada pels canvis de temperatura que la fotosíntesi, la qual cosa pot tenir un efecte dramàtic per als ecosistemes terrestres. Així mateix, la fenologia de les plantes es troba directament ligada a les variacions estacionals de la temperatura. Està actualment demostrat que l’augment global de la temperatura està tenint una resposta en l’avançament de les èpoques de floració i fructificació de moltes plantes, la qual cosa podrà tenir fortes repercussions sobre el cicle biològic i la capacitat de supervivència dels animals dispersors, depredadors, etc. (Peñuelas i Filella, 2001)

A pesar de totes aquestes consideracions, hi ha importants evidències que la fotosíntesi i la productivitat dels ecosistemes terrestres augmenten en resposta al canvi climàtic. Així, mesures directes de l’assimilació del CO₂, al llarg d’un any a diferents ecosistemes europeus han revelat que totes elles presenten produccions positives, és a dir, que totes es comporten com a embornals de carboni (Valentini i col·laboradors, 1999). En condicions mediterrànies tan xèries com les de les Balears no hi ha mesures directes, però sí estimacions indirectes. Així, Osborne i col·laboradors (2000) han demostrat mitjançant models que els ecosistemes mediterranis han augmentat la seva producció durant els darrers 100 anys. A més, ha augmentat la seva eficiència en l’ús de l’aigua (és a dir, la quantitat de biomassa acumulada per unitat d’aigua disponible). De manera similar, estudis en alzines (Quercus ilex) de reforestació durant 30 anys a Itàlia prop de fonts naturals de CO₂ (surgències calcàries) confirmen l’augment del creixement, independentment de l’aclimatació, la sequera i la falta de disponibilitat de nutrients (Miglietta i col·laboradors, 1993).

En conjunt, doncs, sembla que la perspectiva global del canvi climàtic és la d’un augment de la productivitat dels ecosistemes terrestres, tot i que menor del que caldría esperar a partir dels primers experimentes realitzats. Ara bé, totes les espècies respondran de la mateixa manera a aquests canvis?

L’autodiversitat

Que, en conjunt, els ecosistemes terrestres mostrar un augment de la seva productivitat en resposta al canvi climàtic no significa que totes les espècies vegetals mostren augmentos similars. És conegut rellevantment poc de quina manera respondran diferents espècies al canvi climàtic, però el que sembla clar és que aquest beneficiarà princi-palment unes especies, que respondran més que d’altres, de manera que moltes espècies podran perdre competitivitat enfront d’altres i desaparèixer dels ecosistemes, d’aquesta manera es produirà una pèrdua de biodiversitat.

Així, per exemple, sembla que en conjunt les plantes C₄ (anomenades així perquè el primer producte de la fotosíntesi és un compost de 4 àtoms de carboni) responen més al canvi climàtic que no les plantes amb metabolisme C₃ (Wand i col·laboradors, 1999). Aquest fet tindrà repercussions en ecosistemes com els de les Balears, ja que les plantes C₄ són rares aquí, però podria conduir a canvis massius en la composició d’espècies en altres ecosistemes del món, com per exemple en les pra-
dèrres americanes. Un estudi importan-
tant revela que algunes plantes inva-
sores poden respondre molt bé al can-
ví climàtic, de manera que augmenta-
taria el potencial invasor i de despla-
çament d'espècies autòctones (Smith
i col·laboradors, 2000). En general,
sembla clar que les espècies amb una
distribució més limitada seran les més
susceptibles a extingir-se com a con-
seqüència de la dominància d'aques-
tes espècies que millor responguin
al canvi climàtic. Això, la majoria dels
models coincideixen que l'àrea me-
diterrània, incloses les Balears, serà
una de les més afectades per la pèrdua
de biodiversitat (Sala i col·laboradors,
2000). La pèrdua de biodiversitat tin-
drà repercussions ecològiques i soci-
als força negatives. Més encara, un
estudi recent ha suggerit que la pèr-
dua de biodiversitat induïx un me-
canisme de retroalimentació que fa
disminuir l'augment de productivitat
de l'ecosistema (Reich i col·labor-
adors, 2001).

Conclusions
El principal efecte del canvi climàtic
és l'increment de la productivitat ve-
getal degut a l'augment de les taxes
fotosintètiques. Ara bé, aquest incre-
ment es veu marcadament regulat per
l'aclimatació fotosintètica, per meca-
nismes de retroalimentació i per al-
tres elements del canvi climàtic (aug-
ment de temperatura, disminució de
la precipitació). Tot i així, en conjunt,
sembla que la fotosíntesi de les plan-
tes està augmentant en resposta al
canvi climàtic, així com la seva efi-
cència en l'ús de l'aigua, de manera que
augmenta la productivitat dels ecosis-
temes terrestres. Aquest fet permetria,
certament, utilitzar la forestació de
zones degradades com a un mitjà de
reduir l'acumulació de CO₂ a l'ampli

Infants de 0 a 4 anys
Ensenyament en català
Pedagogia activa
Grups reduïts
Servei de cuina

Gianni Rodari

ARQUITECTE BENNÀSSAR, 46
07004 PALMA - Tel. 971 29 90 86
fera. Cal considerar, però, que per absorbir tot el CO₂ que s’emet actualment cap a l’atmosfera caldría realitzar una nova plantació de bosc amb una àrea equivalent, com a mínim, a la meitat de l’àrea d’Europa, i que aquesta nova plantació aniria perdent efectivitat com a embolcall de CO₂, amb l’edat. A més, aquest missatge, que podria semblar positiu, cal contextualitzar-lo. Si bé és cert que, pel que fa a la mitjana, augmenta la productivitat de les plantes i els ecosistemes terrestres, hi ha diferències (poc estudides) en la capacitat de resposta al clima climàtic entre espècies i, fins i tot, entre poblacions d’una mateixa espècie. Aquestes diferències fan preveure canvis importants en l’estructura dels ecosistemes i pèrdues de biodiversitat. La majoria dels models coincideixen que l’àrea mediterrània, incloses les Balears, serà una de les més afecades per la perda de biodiversitat. Des d’una perspectiva conservacionista, doncs, no serà suficient aprofitar els beneficis de l’augment de productivitat general dels ecosistemes terrestres, sinó que cal disminuir les emissions de CO₂ cap a l’atmosfera, tal com s’acordà al Protocol de Kyoto. Un acord que per desgràcia, ara per ara, Espanya sembla en mal camí per poder acomplir-lo.

*Jaume Flexas és professor del Departament de Biologia de la UIB (jaume.flexas@uib.es).

REFERÈNCIES BIBLIOGRÀFICES

